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In unidirectionally reinforced composites with an elastic-plastic matrix, there is a plastic zone 
with length Y0 proportional to the crack length C (y0 >> C) at the tip of a crack. This results in 
a new logarithmic dependence of glass and aramid PABI fibre-reinforced plastics (FRP) on 
crack length and non-fulfilment of the Griffith criterion. In glass and PABI FRP without an 
artificial notch, defects already exist equivalent to a crack with a length depending on com- 
posite fabrication practice. In GFRP, the epoxy matrix shear yield stress grows 2.0 to 2.5 
times, compared to the yield in thin films due to fibre constraint of matrix yielding. The stress 
distribution in front of a crack in a highly anisotropic composite with an elastic-plastic matrix 
is derived. The stress concentration at the tip of a crack grows with increasing matrix yield 
stress, resulting in a change of failure mode from accumulation of fibre breaks at low matrix 
strength, to brittle failure at high matrix strength. The following factors lead to composite 
embrittlement: (1) increase of matrix yield stress and composite shear strength; (2) decrease 
of temperature; (3) increase of Young's modulus of the fibre; (4) reduction of fibre strength. 
The dependence of aramid PPTA FRP strength on temperature exhibits a maximum. Epoxy 
matrix plastification leads to some increase of aramid PPTA FRP strength. 

1 .  I n t r o d u c t i o n  

One of the major problems of fracture mechanics is 
the influence of stress concentrators on strength. 
Using the solution of Kolosov-Inglis [1] for stress 
distribution in an elastic isotropic body with a crack, 
Griffith introduced a thermodynamic criterion of frac- 
ture [2] which was successfully used for locally elastic- 
plastic metals and polymers. Application of linear 
fracture mechanics and Griffith criterion to the fibre- 
reinforced plastics encountered some difficulties, the 
most important of which are: 

1. the strength does not decrease as sharply as is 
described by the Griffith criterion [3, 4]; 

2. the strength decreases if the radius of a circular 
hole is increased despite the independence of the stress 
concentration coefficient in the vicinity of the hole on 
its radius [3-6]; 

3. composite strength practically does not depend 
on the stress concentrator shape. For example, the 
strength dependences on crack length and hole dia- 
meter coincide [3-5]; 

4. a notch oriented orthogonally to the fibres may 
grow not in the initial direction but may turn 90 ~ and 
grow along the fibre direction [7, 8]. 

Many attempts have been made to modify the linear 
fracture mechanics in order to solve these problems. 
The modification of fracture mechanics was realized 
in two main ways. The first is associated with the 
introduction of an empirical length parameter to des- 
cribe the size of  the fracture zone in front of a crack. 
A review of these works is presented in [4]. The main 

shortcoming of this method is the not very good agree- 
ment between theory and experimental data over a 
wide enough range of crack lengths [9]. For example, 
a ten-fold increase in crack length leads to an 
approximately three-fold growth of empirical length 
parameter [10] which is really not constant. For this 
reason, other ways should be sought to solve the 
problem. 

The second method of fracture mechanics modifica- 
tion describes thedependence of streng~/h on the crack 
length by a power function with the index not equal to 
- 1/2 [5, 6, 11]. The index of the power in this case 
is an empirical parameter, as well as the second con- 
stant, which is analogous to fracture toughness in 
classical fracture mechanics. The power function satis- 
factorily fits the experimental data. Unfortunately, the 
power index is not invariant for different composites 
and it cannot be predicted theoretically from fibre and 
matrix properties. 

The present paper represents an attempt to create a 
fracture theory for composites with an elastic-plastic 
matrix, which is based on the solution for stress distri- 
bution in front of a crack in a highly anisotropic 
material with an elastic-plastic matrix. This solution 
principally differs from that of Kolosov for an elastic 
isotropic body, but it is analogous to the solution 
which was obtained in an unpublished work by 
McClintock [12] and used by Scop and Argon [13] to 
obtain stress concentration coefficients for the fibres in 
the tip of a crack. In the present paper the influence of  
a crack, oriented orthogonally to the direction of 
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reinforcement on the strength of unidirectional aramid 
and E-glass fibre-reinforced plastics is investigated. 

2. Materials and experimental 
procedure 

For reinforcement, aramid polyparaamidobenzimid- 
azol (PABI) and polyparaphenilenterephtalamid 
(PPTA) fibres were used [14, 15]. Unless stated to the 
contrary, the matrix is epoxy EDT-10 resin which is a 
composition consisting of 80 parts by weight epoxy 
ED-20 (4,4'bisglycidil-bisphenol-A) resin, 10 parts 
modifier DEG (diethylene glycol) and 10 parts curing 
agent TEAT (triethanolaminetitanate). The matrix 
was cured at 160~ for 4 h. 

We were especially interested in the influence of 
short cracks, but we were unable to obtain notched 
samples with artificial crack of length 40 to 100 #m, so 
hybrid samples consisting of three layers were tested. 
Fig. 1 shows the cross-section of the samples. Layers 
1 and 3 in Fig. 1 are the investigated materials; layer 
2 is of lower elongation fibres. During loading, the low 
elongation layer 2 is fractured, a crack appearing 
before the fracture of layers 1 and 3, which are suffi- 
ciently tough to arrest a running crack originating in 
layer 2. By varying the thickness of layer 2, we 
changed the crack length and investigated the fracture 
elongation and strength of the material. The thickness 
of layer 2 was measured in an optical microscope on 
a polished surface of the rings after testing. 

Ring samples were made by winding filaments 
preimpregnated with resin. Layers 1, 2 and 3 were 
consequently wound on a mandrel 150 mm diameter 
and the matrix was subsequently polymerized. To 
investigate the strength of glass fibre-reinforced plastic 
we used plastics reinforced with aramid PABI and 
PPTA fibres as a low elongation layer 2 (the critical 
elongation of glass, PABI and PPTA fibres is 3.8 to 
4.0, 3.1 to 3.3 and 2.4 to 2.6%, respectively). In order 
to investigate PABI fibre-reinforced plastic as layer 2, 
plastic reinforced by PPTA fibres was used. 

The condition C < B (Fig. 1) was always fulfilled. 
The crack could thus be considered in one dimension 
with a length C. For each measurement, five ring 
samples were tested using two joined half-discs [16]. 

Apart from ring samples, the tensile strength of 
strands, i.e. samples in the form of fibre bundles which 
are fixed by epoxy matrix in the exact position of 
preferred orientation, was also measured. To manu- 
facture the strands, a bundle of liquid-matrix-impreg- 
nated fibres was wound on two different types of 
mandrel. The first was a cylinder, 350mm diameter. 

Figure 1 Cross-section of the sample. Layers 1 and 3, investigated 
material; 2, fibre-reinforced plastic with lower fracture elongation 
(layer 2); C, thickness of the layer 2; B its width. After fracture of 
layer 2, C is the crack length. 

Owing to the axial pretension of the fibres on the 
round mandrel, transverse stresses arose and the 
strand cross-section became flat. The width of organic 
fibre strand was 1.5 to 2.0mm with a maximum thick- 
ness of only 0.15 to 0.20 ram. 

On the second mandrel the filament was not in 
contact with its surface over the work length, and 
transverse stresses did not appear. The strand cross- 
section in this case was practically round, and 0.3 to 
0.35 mm diameter. To lower the stress concentration 
near the grips, the board straps were glued to the ends 
of strands. The strand gauge length was 100 mm. The 
matrix content in the strands was not less than 
60 vol % to eliminate its longitudinal cracking. The 
strand strength was calculated from fibre area only, 
and the matrix cross-section was not taken into 
account. 

Composite shear modulus was measured by torsion 
of unidirectionally reinforced tubes. 

Mechanical measurements were carried out on 
"Instron 1122" and "Instron 1169" testing machines. 
Yield-zone length measurements were made with a 
"Karl  Zeiss" optical microscope specially equipped 
with two polarizers. 

3. Results 
3.1. The effect of a crack on composite 

strength 
Fig. 2 shows the dependence of glass fibre-reinforced 
plastic strength on crack length, C. This dependence 
may be presented as a straight line on semilog coor- 
dinates, o--ln C, the tangent of slope, q, is equal to 0.14 

= ~0[1 - q In (C/Co) ] C >1 Co (1) 

where o- 0 is the strength of the composite with no 
artificial notch. 

The dependence may also be presented as a straight 
line using in a-ln C coordinates (Fig. 3). Consequently, 
the composite strength may be described by  a power 
function 

G = ~ o / ( C / C o F  (2) 

where the power index Q is very close to the coefficient 
in front of the logarithm in Equation 1. 

Fig. 4 shows the dependence of the PABI fibre- 
reinforced plastic strength on the crack length. A log 
dependence of composite strength is also observed, 
and the tangent of slope equals 0.06. Co depends on 
the plastic manufacture technology, and is approxi- 
mately 40 ym if the composite is wound using a single 
filament, and 150 to 200 ym if it is wound as a roving 
consisting of 17 parallel filaments (curve 2, Fig. 4). 

In accordance with Figs 2 and 4, a ten-fold increase 
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Figure 2 Strength, a, against log (crack length, C) for glass fibre- 
reinforced plastic rings. 
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Figure 3 Log (strength) against log (crack length) for glass fibre- 
reinforced plastic. 

in a crack length leads to decrease in organic and glass 
fibre-reinforced plastics strengths of  not 101/2 times, 
but of 14% and 32% only. The power indices are dif- 
ferent for organic and glass fibre-reinforced plastics 
and it is lower in the case of  organic fibre-reinforced 
composite. Thus, q defines composite sensitivity to 
defects. The higher the value of  q, the higher is plastic 
sensitivity to defects. 

The strength of a brittle material depends on the 
stress concentration in the vicinity of  the most "dan- 
gerous" defect, consequently Figs 2 and 4 suggest that 
in a composite with no artificial notch, there is a stress 
concentrator equivalent to a crack of  length Co. Note 
that a crack 50/~m long represents five or six rows 
of broken glass fibres (8 to 10#m diameter) if 
the reinforcement content is approximately 60 vol %. 
Analogously, cracks 40 and 150 to 200 #m long pres- 
ent 3 and 12 to 15 rows of  broken organic fibres which 
are 12 to 14 ffm diameter. 

Thus, we may draw some preliminary conclusions. 
1. If  the crack length is < 1 mm, the strength of 

unidirectional glass and organic fibre-reinforced plas- 
tics does not decrease in accordance with the Griffith 
criterion, but logarithmically. 

2. At the same time, if the crack length C is less than 
Co, no decrease in strength occurs. Consequently, in 
fibre-reinforced plastic with no artificial notch, there is 
already a stress concentration equivalent to a crack of 
length Co. The size of the composite defect C o depends 
on its manufacture technology. 

3.2. Solution for stress distribution in front of 
a c rack  

To explain the log dependence of composite strength 
on crack length, the problem of stress distribution in 
front of a crack in a highly anisotropic reinforced 
material with an elastic-plastic matrix will be solved. 

Note that epoxy matrix is elastic and brittle only in 
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Figure 5 Stress-strain curve obtained for EDT-10 resin film 150#m 
thick. 

bulk, although the beginning of EDT-10 plastic defor- 
mation under tension is observed even in dog-bone 
shaped samples of 5ram diameter [17], the critical 
elongation of  which reaches 8 to 10%. The elongation 
of a resin film thickness of  150#m reaches 30% to 
40% (Fig. 5). Despite the composite elasticity on a 
macroscopic level, a matrix local plasticity is revealed 
near broken fibres and cracks in the composite (Fig. 
6). Figs 5 and 6 show that the epoxy matrix may be 
considered as locally elastic-plastic. 

Let us estimate the stress distribution in a unidirec- 
tionally reinforced composite after the material near 
the stress concentrator reaches yield stress. Every- 
where except for this zone material is considered to be 
elastic. With this aim, we consider the elasticity theory 
problem for a half-plane with a tension stress, or0, far 
from the crack. Reduction to the plane stress problem 
is justified because the crack length in the axial Z 
direction is an order higher than that in the axial X 
direction (Fig. 1). 

If a crack is absent, then due to symmetry, the 
following conditions are satisfied 

<,=0. = 0, S = So, a = cr o 

where r is the shear stress, S the displacement, G the 
tensile stress. 

Let us suppose that a crack perpendicular to the 
direction of reinforcement appeared in the vicinity of 
X = 0 (Fig. 7). This leads to the appearance of a yield 
zone with a length Y0 parallel to the fibres. Let us 
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Figure 4 Strength against log (crack length, C) for aramid PABI 
fibre-reinforced plastic. Rings were wound from a single filament (1) 
and from a roving composed of  17 parallel filaments (2). 

Figure 6 Photograph of the cracked area (polarized light). Arrows 
indicate shear lines in the epoxy resin in front of  a crack, plastic zone 
oriented along the fractured carbon fibre-reinforced plastic (black 
zone) and overstressed area in the glass fibre-reinforced plastic. No 
crack in the carbon fibre-reinforced material is seen because carbon 
fibres are broken in different planes. The crack plane is analogous 
to a brush with sticking out fibres. 
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Figure 7 Model of composite with a crack, l, fibre layer; 2, matrix 
layer; 3, yield zone in matrix. Three fibre layers are fractured. The 
composite, with the exception of yield zones, is assumed to be elastic 
in all areas. 

assume that in this zone and in particular at X = 0, 
-Y0 ~< Y ~< Y0 tangent stresses are equal to matrix 
yield limit. The length of the yield zone may be cal- 
culated from the equation, which results from the 
equilibrium of the cracked layer in shear lag approxi- 
mation [18] 

Y0 = C o'0/2% (3) 

where % is the matrix shear yield limit and a0 is the 
external tensile stress. 

The influence of normal stresses on the boundary 
X = 0, as shown by additional analysis, may be neg- 
lected because normal stresses do not exceed the yield 
limit of the matrix. Strain hardening of the matrix in 
the yield zone is not taken into account. 

Material in the half-plane X > 0 is considered to be 
highly orthotropic; then using the asymptotic method 
[19] and assuming ~ = Gc/Ec is small, we obtain in a 
first approximation the �9 boundary problem 
for the additional displacement S(x, y) which is due to 
the existence of a disturbed zone (Go and E~ are the 
composite effective moduli in shear and tension) 

~2 S ~2 S 

Ec-~f  4- Gc~-~-x2 = 0 (4) 

r0 i f0  ~< y ~< Y0 

Go 0~-xS x:o = - %  i f - y 0  ~< Y < 0 (5) 

0 if l Yl > Y0 

Gc~xX R ~  : o; sIR+oo = 0 

where G~(OS/Ox) is the shear stress, Y the axis of fibre 
orientation, X = 0 the plane of the crack and R = 
(X 2 § y2)1 /2 .  

Applying the Fourier transformation along coor- 
dinate y to Equation 4 and to the boundary conditions 
(Equation 5), we have 

d 2 V 
Gc dx  2 E c  t 2 V = 0 

(6) 
d~-xV .,-=0 2i% (1 tyo) G c - - -  COS 

t 

where V(x, t) = ~ S(x, y) exp (ity) dy. 

The solution of Equation 6 under the requirement 
V --+ 0 at R --, oo may be written in the following 
form 

2i% 
V(x, t) = t[tl(EcGo)l/2 (1 - cos tyo) 

x exp [ -  (Ec/Gc)~/zlt[x] (7) 

Then the additional tensile stress is found to be 

#S _ Eci !~ 
ay = E c @ 2~ ~ tV  exp ( - i t y )  dy (8) 

Solving Equation 8 we have 

2% 
as - (Eo/Gc) 112 

7~ 

x In 1 + 4 % [ f  + (E~/Go)x 2] (9) 

Assuming R -* 0 in the disturbed zone, the unity 
within the brace may be neglected and at the very tip 
of the crack the total stress may be written as 

2% 
a = cr o 1 + - - ( E c t G c )  tl2 

7~ r o 

c.0 
• In 2 % [ f  + (E~IGo)x2]II2J (10) 

This solution demonstrates that a singularity in front 
of a crack is weaker than in the Kolosov-Inglis solu- 
tion and, respectively, the dependence of reinforced 
composite strength on a crack length is not so sharp as 
in the Griffith criterion. 

Equation 9 is analogous to the McClintock solution 
[11], found on the basis of results for planar yielding 
in front of a crack. Functions in front of logarithms in 
the Equation 9 and the McClintock solution coincide, 
although the functions under the log differ. 

Equation 9 allows calculation of the stress con- 
centration factor in the undestroyed element nearest 
to the Crack in a one-dimensional layer composite. 
Assuming in Equation 10 that y = 0, the stress may 
be averaged on the element area 

@ )  = ~ a(x) dx = Kao (1l) 

where H is the length of one layer of fibres with 
matrix. If N = C/H (the number of destroyed fibre 
layers) Equation 11 yields 

K = 1 § q In (Ne/Tw) (12) 

2 z  0 
q - (Eo/Gc) ~/2 (13) 

~a0 

The McClintock solution leads to the following 
�9 pression for the stress concentration factor, K 

K = 1 § q In (Ne/q 2) (14) 

Substituting experimental values of 0.14 and 0.06 for 
q in Equations 12 and 14 we obtain, respectively 

K = 1.25 (Equation 12), K = 1.69 (Equation 14) 

f o r q  = 0.14 a n d N =  1 

K = 1.16 (Equation 12), K = 1.40 (Equation 14) 

f o r q  = 0.06 a n d N  = 1 
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Equation 14 leads to an obvious overestimation of  
the stress concentration factor which cannot be 
higher than 1.50. If the stress of  the fractured layer is 
conveyed to two adjacent elements only, K will just 
equal 1.50. But Equation 14 leads to estimates of 
K > 1.50 if q > 0.084. Equation 12 does not have 
this shortcoming. 

The stress concentration factor, K, is determined by 
two dimensionless parameters: the first, N, describes a 
crack length (C = N H  and H approximately equals 
the fibre diameter), the second, q, is defined by fibre 
and matrix properties (Equation 13). 

It is natural to suppose that the crack growth starts 
if the stress in the fibres which are nearest to the crack 
tip reaches their strength, ~r 

a = a r / K  (15) 

Expanding K -l in a power series of q, in the first 
approximation we obtain Equation 1. Thus, Equation 
9 allows one to explain the log dependence of strength 
if the tangent of the slope of  the straight lines in Figs 
2 and 4 coincide with the coefficient in front of the 
logarithm (Equation 13). 

3.3. C o m p a r i s o n  of t h e o r y  and  e x p e r i m e n t  
To calculate the theoretical values of the coefficient in 
front of the logarithm, four parameters must be 
known: the composite tensile strength, a0; tensile 
Young's modulus, Ec; the shear modulus, G~; and the 
matrix yield stress, %. Composite strength was deter- 
mined by mechanical testing of rings, the tensile 
Young's modulus was calculated from the equation 
Ec = VrEf, where Vr and Er are fibre volume content 
and modulus. The composite shear modulus was 
measured experimentally by torsion of unidirectional 
tubes with a fibre content of  65 to 68 vol %. The most 
serious problem lies in the determination of the matrix 
shear yield stress, r0, in the composite, r0 may be 
obtained by 

1. the measurement of  matrix tensile yield stress, a,, 
and consequent calculation from the equation 

1:0 = O-t/2 (16) 

at = 86 t o  9 2 M P a ,  "c o = 43 to  4 6 M P a ;  

2. the adhesion strength measurement based on the 
well-known fibre pull-out method. The adhesion 
strength of epoxy EDT-10 resin to the surface of the 
fibres is 100 _+ 20MPa [20]. If the yield limit of the 
matrix is lower, cohesive fracture of the resin will take 
place at a shear stress, "Co. Thus "Co must be > 80 to 
120 MPa; 

3. the measurement of composite shear strength 
Which in glass fibre-reinforced plastic reaches 70 to 
80 MPa [21]. 

The values obtained by methods 2 and 3 are not in 
conflict, but there is a contradiction with estimate 1. If 
the matrix yield limit is 45 MPa, the adhesion and 
composite shear strength will not be so high. During 
testing of  thin resin films, yielding occurs in shear and 
it is not constrained due to the presence of the free 
surfaces. In cases 2 and 3 yield is constrained by the 
fibre, resulting in an increase in yield. 
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Figure 8 Dependence of the yield zone length, Y0, on the broken 
glass fibre diameter, dr. 

To obtain the matrix yield stress in the composite by 
direct experiments, the dependence of the yield zone 
length near a broken fibre, y0, was measured optically 
in polarized light, and % was defined from the Kelly 
equation [18] 

~o = adr/4yo (17) 

where dr is the fibre diameter, a the fibre tensile stress. 
The results are presented in Figs 8 and 9. According 

to Fig. 9 % is 110 _+ 20MPa and the matrix yield 
stress increases in the composite due to the fibre con- 
straint effect. To calculate the theoretical value of  
the coeff• in front of the logarithm for glass fibre- 
reinforced plastic in Equation 13, values of a 0, %, Eo 
and Gc of 2.0 GPa, 110 MPa, 59 GPa and 6.5 GPa were 
used. The 0.11 value obtained is only 1.3-fold lower 
than the experimental value of 0.14. 

To calculate q for organic fibre-reinforced plastic it 
is necessary to take into account that shear and trans- 
verse properties of polymer PABI fibres are lower than 
that of the epoxy EDT-10 resin [22]. For this reason, 
an increase in matrix yield stress in the composite is 
hardly possible, and composite yield stress is also 
determined by fibre properties. In this case, the fibre 
yield stress in Equation 13 must be substituted. For  
PABI  fibres, the precise -c0 value is not known. Accord- 
ing to Andreev et  al. [22] the PABI fibre shear strength 
is 40 to 60 MPa and according to Bazhenov e t  al. [23] 
the shear yield stress of PABI fibre-reinforced plastic 
is 40 to 50MPa. Thus we may suppose % = 40 to 
50 MPa. Substituting into Equation 13 values for ~0, 
%, Ec and Gc equal to 2.2 GPa, 40 to 50 MPa, 72 GPa 
and 1.5 to 2.0 GPa, q is estimated to be 0.07 to 0.10. 
The experiment gives q = 0.06. Consequently, the 
coincidence between theory and experiment in both 
cases is satisfactory. 
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Figure 9 Dependence of the matrix shear yield stress in the tom- 
posite on the broken glass fibre diameter, df. 
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4. Analysis 
4.1. Ef fect  of  mat r ix  on  c o m p o s i t e  tens i le  

s t reng th  
If the matrix yield stress is increased, the stress con- 
centration near a defect grows (Equation 13). If all the 
fibres are equal in strength (af), the composite failure 
criterion is attainment of  af in the fibres nearest to the 
defect (Equation 15). The existence of fibre strength 
dispersion leads to some complications in the prob- 
lem. In this case, an increase in matrix yield stress 
leads to two mutually opposite effects. First, is the 
growth of stress concentration near defects and 
second is an increase in mean fibre strengths, ar, due 
to a decrease in fibre ineffective length. 

To analyse composite strength dependence on z0, 
the composite is considered to be a row of fibre layers 
connected by a matrix (Fig. 7). If N fibre layers are 
cut by a crack, their load is redistributed on to the 
unbroken fibres. The fibres in the layer nearest to 
the cracked layer receive an additional load AF = 
(K - 1)o-, where K is the stress concentration coeffi- 
cient and a is the external stress. Owing to the stress 
concentration, the weakest fibres of the first layer 
break, and AF is reduced to PKa, where P is part of 
the broken fibres. If the total additional load of the 
first layer of fibres (AF = (K - 1)~ - PKa) equals 
zero, crack growth begins. 

For  the Weibull distribution of fibre strength, this 
part of  broken fibres is described by 

P = 1 - exp [-(Ka/ar)b/b] (18) 

where ar is the fibre strength in the composite 

ar = (ab&o) -~/b (19) 

where a and b are the Weibull distribution parameters 
[16], &0 is the fibre ineffective length, which is equal 
to double yield zone length, Y0 (Equation 17). 
Expanding the exponent into a series, as a first 
approximation we obtain 

ac = [ ( K -  1)b/K]'/baf/K (20) 

The coefficient [(K - 1)b/K] I/b accounts for the fibre 
strength scattering. As it is approximately unity, the 
effect of fibre strength scattering on composite 
strength is not very significant. 

Fig. 10 shows the dependence of glass fibre-rein- 
forced plastic strength (Equation 20) on T0. 

If  the defect length is not high (N ~< 1) the increase 
in To leads to a monotonic strength growth. The 
dependence is essentially different if N ~> 2. In this 
case, the strength maximum at some To value is 
observed. 

At low matrix strength the stress concentration may 
be neglected and the failure mode is statistical accu- 
mulation of fibre breaks [16]. On the other hand, if the 
matrix strength is high, the stress concentration near 
the defects cannot be neglected, and the failure is by 
brittle growth of a crack. 

We must note that the position of the maximum in 
Fig. 10 shifts if the defect length changes. The higher 
the defect size, the lower the yield stress matrix used 
must be to obtain maximum composite strength. This 
conclusion must be taken into account if the samples 
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Figure 10 Dependence of glass fibre-reinforced plastic strength on 
matrix shear yield stress and q. (1) b = 12, N = 0; (2) b = 12, 
N =  1;(3) b = 12, N = 2; (4) b = 12, N = 4; (5) b = 12, N = 
20; (6) b = 6, N = 20. 

are tested with the aim to choose the matrix for a 
composite used in large-scale constructions. Note 
some increase in composite strength occurs with a 
decrease in b if z0 is too high. Thus in brittle com- 
posites, broadening of the fibre strength distribution 
decreases the danger of brittle failure to some extent. 

According to Equation 13, matrix yield stress 
growth, increasing Young's modulus of the fibre, 
decrease in fibre strength and Young's modulus of the 
matrix lead to composite embrittlement. For example, 
the brittle failure of carbon fibre-reinforced plastic is 
more probable in comparison with glass fibre-rein- 
forced plastic, due to the high Young's modulus of the 
carbon fibres. In metals, embrittlement is observed if 
the strength is increased; in reinforced composites the 
situation is opposite. For example, the progress in 
carbon fibre engineering resulting in an increase 
of fibre strength may decrease the danger of brittle 
fracture. 

The effect of the matrix on composite strength may 
be investigated by changing the test temperature. It is 
well known that polymers are plasticized and their 
yield limit is reduced if the temperature is increased. 

4.2. Ef fect  of  mat r ix  p las t i c i za t ion  on 
c o m p o s i t e  s t reng th  

Fig. 11 shows the variation of strength of aramid 
PPTA fibres and PPTA fibre-reinforced plastic with 
temperature. The fibre strength is reduced if the 
temperature is increased. On the contrary, the com- 
posite ring strength increases up to the matrix glass 
temperature (80 ~ C). Of course, composite strength is 
reduced sharply above the matrix glass temperature, 
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Figure l! Temperature dependence of PPTA fibre-reinforced plas- 
tic strength. 1, filament of PPTA fibres; 2, ring samples; 3, flat 
cross-section strand; 4, round cross-section strands. 
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Figure 12 Dependence of  strength of PPTA filament (I) and flat 
cross-section strand (2) on strain velocity. 

due to its dramatically reduced properties. An increase 
in composite strength may be explained by a decrease 
in stress concentration near defects at elevated 
temperatures. 

The strength of strands with round cross-sections is 
reduced monotonically if the temperature is increased. 
The effect may be explained by absence of defects in 
the samples. The strength of strands with a flat cross- 
section is maximum. These samples are very thin (four 
to five fibre diameter in thickness), and the fracture of 
a single fibre may lead to significant stress concentra- 
tion in the unbroken neighbouring fibres. This may be 
the reason for the significant difference in temperature 
strength dependences of flat and round cross-section 
strands. The strength dependence of flat strands is 
analogous to that of ring samples. 

Usually it is considered that different test methods 
result in similar dependences. Fig. 11 shows that this 
is wrong and even the shape of the strength curves 
may be different. 

Fig. 12 shows the dependence of aramid fibre-rein- 
forced plastic strength on strain velocity. The depend- 
ence is abnormal and increasing strain velocity leads 
to a decrease in composite strength despite increasing 
fibre strength. 

Fig. 13 shows the effect of matrix plasticization. The 
epoxy resin was plasticized by increasing the diethyl- 
eneglycol (DEG) modifier content. Plasticization 
leads to an increase in strand strength if the cross- 
section of the samples is flat. 

The abnormal effects of temperature and strain 
velocity on strength may be explained by a decrease in 
stress concentration near defects with decreasing 
matrix yield stress. 
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Figure 13 Variation of  strength of PPTA fibre-reinforced strands 
with modifier DEG content in epoxy ED-20 matrix. 1, flat cross- 
section strand; 2, round cross-section strand. 
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Figure 14 Length of longitudinal cracks appearing near a circular 
hole of 3 mm diameter plotted against tensile stress. 1, Glass fibre- 
reinforced plastic; 2, PABI fibre-reinforced plastic. 

4.3. Longitudinal cracking near stress 
concentrators 

Local shear deformation in the yield zone of the 
matrix is very high. For this reason, near a stress 
concentrator, four cracks oriented along the fibre 
direction may appear in the yield zone (Fig. 7) [7, 24, 25]. 

Fig. 14 shows the dependence of length of the lon- 
gitudinal cracks appearing near a circular hole on the 
tensile stress. The cracks appear at critical stress, a0. 
To find o- 0 the energy consideration may be used 
and the Griffith criterion in this case is valid [24] 

~o = (4GncEc /D)  '/2 (21) 

where Gn~ is the shear fracture energy, Ec Young's 
modulus of the composite, and D the hole diameter. 

According to Equation 21, longitudinal cracking is 
possible if the defect length exceeds Dc 

Dc = 4Gn~Eo/cr~ (22) 

where a0 is the composite strength. The increase in 
fracture energy GHc and decrease in o- 0 lead to growth 
of the critical defect length, De. 

If D < Do longitudinal cracking is not possible and 
the above theory is applicable to composite fracture. 
Thus fracture is a competition between two processes. 
The first is growth of the initial defect across the fibres 
due to stress concentration near it, and the second 
is longitudinal cracking. Longitudinal cracking is 
decribed by the Gritfith criterion and is typical for 
long defects. Substituting typical values of Gno (Fig. 
15), Ec and a0 for organic and glass fibre-reinforced 
plastics into Equation 22, we estimate Dc ~ 0.5 ram. 

According to Equation 21, the shear crack must 
grow steadily to infinite length if a = a0. In fact, the 
growth of longitudinal crack length leads to signifi- 
cant fracture energy increase (Fig. 15)due to the 
presence of unbroken fibre stringers which connect the 
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Figure 15 Fracture energy G I I  c plotted against length of  longitudinal 
crack, L c. 1, Glass fibre reinforced plastic; 2, PABI fibre-reinforced 
plastic. 

3947 



opposite sides of the crack [25]. As a result, the energy 
is dissipated on fracture in the crack tip and also 
on work against shear forces due to the presence of 
stringers. 

5. Discussion 
Plastic zones appear at the tip of cracks in metals and 
isotropic polymers. Nevertheless, the Griffith criterion 
is applicable to polymers, but not to fibre-reinforced 
plastics. The main difference between these materials 
is the high anisotropy of the composite leading to a 
proportionality between the lengths of  the yield zone 
and the crack. The fracture energy is proportional to 
the size of the plastic zone [26]. In epoxy resin, the 
critical length and thickness of the zone do not depend 
on crack length and, as a consequence, the fracture 
energy does not depend on crack length. In com- 
posites the yield zone length increases with growth of 
the crack length, the fracture energy is not constant 
and the Griffith criterion is not valid. 

It should be noted that Equation 9 describes the 
stress distribution near a circular hole. The length of 
the plastic zone which appears near the hole is des- 
cribed by 

yo = Do-o/2% (23) 

where D is the hole diameter. The boundary con- 
ditions for the hole problem coincide with the crack 
problem boundary conditions ifD = C. Consequently, 
the stress distribution in the vicinity of the hole may be 
described by Equation 9. The composite is thus prac- 
tically insensitive to the stress concentrator shape. It is 
interesting to note that in the present approximation 
there is a stress singularity near the hole. 

The dependence of shear fracture energy on crack 
length (Fig. 15) is associated with the presence of 
unbroken fibres connecting the opposite sides of the 
crack. The stringers load the peeling composite strip 
with shear forces. If the shear stress, zs, does not 
depend on the distance from the crack tip, it is analo- 
gous to the matrix yield stress and Equation 9 may be 
used to describe the stress distribution near a defect 
for composites with elastic matrices. Thus rs is sub- 
stituted for the matrix yield stress, c0, in Equation 9. 
In fact, in glass fibre-reinforced plastic, rs cannot be 
considered constant due to the developing fracture of 
brittle glass stringers which leads to a decrease in r~, 
and G~c asymptotically approaches its limiting value 
at high crack length (Fig. 15). On the contrary, in 
PABI fibre-reinforced plastic, rs may be considered 
constant and Equation 9 may be used. 

Transition from brittle failure to accumulation of 
fibre breaks may explain some abnormal effects. The 
first is an increase of carbon fibre-reinforced plastic 
residual strength after several cycles of preliminary 
loading and after impact [27]. Owing to a significant 
increase in yield zone length after preloading [28], an 
effective shear stress near defects is reduced. As a 
result the stress concentration is also reduced. The 
second is an increase of B/A1 and glass fibre-reinforced 
plastics strength if the adhesion between fibre and 
matrix is degraded [29, 30]. The third effect is the 
abnormal temperature and strain velocity dependences 
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of strength in Figs 11 and 12. According to Kimura 
et al. [31] the C/C composite strength is maximum 
at elevated temperatures when the carbon matrix 
becomes plastic. It should be especially noted that the 
maximum position shifts to the region of higher tem- 
peratures for specially notched samples, compared to 
unnotched ones. The effect may be explained by the 
shift of maximum position in Fig. 10. Reduction of 
composite sensitivity to defects at elevated tem- 
peratures was demonstrated directly by Bazhenov 
et al. [32]. In glass fibre-reinforced plastic, the coeffi- 
cient q decreases if the temperature is increased [32]. 
Of course, the temperature dependence of the maxi- 
mum composite strength is not observed in all com- 
posites. For example, the strength of PABI fibre- 
reinforced plastic (q = 0.06 only) monotonically 
decreases [33]. 

It must be noted that there is a second effect leading 
to an increase in composite strength if the matrix is 
plasticized (at elevated temperatures, for example). In 
composites with high fibre elongation due to Poisson's 
contraction during loading, longitudinal cracking 
may appear. This leads to some strength decrease [34]. 
Matrix plasticization suppresses the cracking and a 
strength increase may also be observed [23, 34] for this 
reason. 

6. Conclusions 
1. Unidirectionalty reinforced composite strength 

reduces logarithmically with increasing transverse 
crack length. 

2. In samples without an artificial notch, defects 
already exist with their length depending on the fab- 
rication process. 

3. The stress distribution near a crack tip in a com- 
posite with an elastic-plastic matrix possesses log- 
arithmic singularity. 

4. The stress concentration grows with increasing 
matrix yield stress and Young's modulus of the fibre 
as well as with reduction in fibre strength and Young's 
modulus of the matrix. 

5. Increasing matrix yield stress leads to composite 
embrittlement and a decrease in strength if the matrix 
yield is too high. The position of the strength maxi- 
mum depends on defect length. 

6. Matrix shear yield stress in the composite 
increases 2.0 to 2.5 times due to the fibre constraint of 
matrix yielding, compared to the yield of thin films. 

7. Epoxy EDT-10 resin plasticization leads to 
increase in strength of aramid PPTA fibre-reinforced 
plastic. 

8. Long cracks turn and grow along the fibre direc- 
tion. 
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